Lyapunov-Schmidt reduction for optimal control problems
نویسندگان
چکیده
منابع مشابه
Lyapunov–schmidt Reduction for Optimal Control Problems
In this paper, we use the method of characteristics to study singularities in the flow of a parameterized family of extremals for an optimal control problem. By means of the Lyapunov–Schmidt reduction a characterization of fold and cusp points is given. Examples illustrate the local behaviors of the flow near these singular points. Singularities of fold type correspond to the typical conjugate ...
متن کاملA New Optimal Solution Concept for Fuzzy Optimal Control Problems
In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...
متن کاملGeneralized B-spline functions method for solving optimal control problems
In this paper we introduce a numerical approach that solves optimal control problems (OCPs) using collocation methods. This approach is based upon B-spline functions. The derivative matrices between any two families of B-spline functions are utilized to reduce the solution of OCPs to the solution of nonlinear optimization problems. Numerical experiments confirm our heoretical findings.
متن کاملA Method for Solving Optimal Control Problems Using Genetic Programming
This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.
متن کاملPontryagin's Minimum Principle for Fuzzy Optimal Control Problems
The objective of this article is to derive the necessary optimality conditions, known as Pontryagin's minimum principle, for fuzzy optimal control problems based on the concepts of differentiability and integrability of a fuzzy mapping that may be parameterized by the left and right-hand functions of its $alpha$-level sets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series B
سال: 2012
ISSN: 1531-3492
DOI: 10.3934/dcdsb.2012.17.2201